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The Hill’s case of the problem of three bodies (distance between two points is 
considerably smaller than the distance of their barycenter to the third point) is 
considered. The secular evolution is first determined using the perturbation the- 
ory by a system of equations with the Hamiltonian averaged over mean longi- 

tudes of points. The averaged problem is integrated, and analyzed for allofits 
admissible parameter values. Situations in which motion on plane circular or- 

bits is unstable are revealed. In connection with this the averaged problem of 
three bodies is used for investigating the stability of plane circular retrograde 

motions for arbitrary ratios of major semiaxes of orbits. Relations between para- 
meters of the problem for which such orbits are unstable are determined. 

1. Strtemsnt of tha problem, In the general problem of three bodies we 
denote the three points and their masses by m,, m, and m, the radius vector of point 
mk relative to mi by rjk , and by rs the radius vector of point ma relative to the ba- 

rycenter B of points m,, and ml. 
The limit variant of this problem, when 

I ro1 I <l%l (LV 

will be called the l-Ii11 case by analogy with the bounded problem. 

It is assumed that the following conditions of smallness of reciprocal perturbations are 

satisfied : 
VI = 

m. l~OllS <E 

mo+w lIr2P ' 
84 1 (1.2) 

If the terms proportional to ‘vr and vs are neglected in the equations of motion, the 
orbits of m, and mrL relative, respectively, to m, and B are determined by solutions of 

the problem of two bodies. Here we consider the case when the “unperturbed” orbitsare 
ellipses. Methods of the perturbation theory can be used for deriving an approximate 
solution when in limited time intervals vr -k Va # 0. 

In the absence of resonance ~latio~hips between mean motions of ml and m, the 
fundamental laws of orbit evolution in this problem are determined in the first approxi- 
mation with respect to e by the Hamiltonian averaged over mean anomalies (or mean 
longitudes) of the orbital motion of m 1 and %. It is said that an averaged Hamiltonian 

defines “secular” variation of orbit elements [I], 
The doubly averaged problem of three bodies may be reduced with the use of known 

first integrals to the Hamiltonian problem with two degrees of freedom [l], which is, ap- 
parently, not integrable. It is important that in the limit Hill’s case (1.1) of this prob- 
lem one of the two angular variables is cyclic, and the problem is integrable. 

The Hamilton function H of the problem of three bodies (see El]) is convenientfy 
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represented in the form 

H = H1 + Hz + H’ (1.3) 

rol = (ql, q2, q3), r2 = (q4,c15, qd 

P(l) = (Pl, P‘h p3) = PI 7 f 

dr, 
PCS) = (P4r P51 Pa) = c12 r 

drol 

where yi are projections on the axes of the nonrotating system of coordinates, f is the 
gravitational constant, and pi and qi are canonically conjugate variables of the problem. 

Using the assumption (1.1) and the expansion of H’ in series in 1 rol I/ 1 rz 1, we ob- 
tain the asymptotic representation 

( J I rol 13 H’-H”+ *o lr21S 

ITI” = - ~~ L s (&OS2 cp - l), p= f momlm2 
m0+ml 

(1.4) 

(1.5) 

where v is the angle between vectors rol and r2. When H’ = 0 the Hamiltonian(1,3) 
defines the unperturbed motions of m, and rn2 relative to m, and to the barycenter B 
of bodies m,and m, ,respectively. By neglecting the terms 0 ( I rol I’// r2 I31 we ob- 

tain the approximate variant of the perturbed problem which we shall call the Hill’scase. 
In that case the perturbation part of the Hamiltonian is of the form (1.5). 

Below for the description of evolution we use as the Keplerian osculating elementsof 
the orbit the major semiaxis aj, the eccentricity ej, the inclination ij (i,= 1, 2) to 
the basic fixed plane, as well as the uniquely connected to these canonical Delaunay ele- 

ments : momenta __ 
Lj =: pj I/fnlj I/Uj, Gj ~m Lj r/ 1 - ej2, @j :m Cj ~09 ij 

(iIT =-: m, _t m,, Ill, = m, + ml + mz) 

and their associated coordinates: the mean anomaly Zj, the argument of the pericenter 
latitude gj and the longitude of the ascending node t-fj. In Delaunay elements 

Ilj _ _ AC- 
,Lj” 

(i = 1, %), H’ = H’(&, . . ., g,, I,, I,,, ., g,, Z2) 

Further simplifications are based on the following considerations [l]. 
1”. Except for particular (resonance) values of f?; and /,? there exist at fairly 

small V, and 2’? a 2n-periodic with respect to I,, 1, and other angle variables thesub- 
stitution of variables 

Lj-tLj, . . ., lj+ij 

which differs from the identical by a function of order E. The Hamiltonian g of the 
problem is obtained from the input one to within terms of higher order with respect to 
E in terms denoted by an upper stroke by a formal substitution of Ej, . . . for Lj. 
and of Tj for, lj , and its independent averaging with respect to II and 1, from 0 to 22. 
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Digressing from the conditionally periodic functions of order E that define the substitu- 
tion of variables, we obtain in the first order of the per~rbation theory the problem with 
the Hamiltonian 

&__g_ 

2n2x 

&-j-W', F = -&- \ 1 H'dl&2 (1.6) 
1 

In the averaged problem Lj are constants, since Zj are cy&~ coordinates. 
2”. In the considerea problem the vector of kinetic moment remains unchanged. 

If the plane orthogonal to that vector - the so-called Laplace plane - is taken as the 
basic coordinate plane, the area integrals make it possible to reduce the number of de- 

grees of freedom by two, This is formally achieved by the substitution 

in the Hamiltonian H’, where c = Or -/- 0s is the constant of areas. 
The result of this substitution is that the Hamiltonian al of the problem now depends 

on four canonical variables rr, l?a, g, and g, on parameters L, and Lz , and on the con- 
stant of areas c. We thus obtain a problem with two degrees of freedom. 

The relative inclination of orbits 1, their eccentricity ej , and the major semiaxes Uj 
are determined by the following formulas: 

3”‘ If the perturbing Hamiltonian W’ is restricted to the Hill approximation H” 
(1.5), the variable g, vanishes from the averaged Ha~ltonian i?“, and the considered 
problem proves to be integrable. The explicit formula for H” is 

H”=- Pa? 
13 (1 - e12) (1 + C0S2 I) + 15 (CoS’ gl+ (1.8) 

8~~3 (1 - e&” * 

~09 I sin2 gl) - 6e12 - 4] 

where cos 1 and ej are determined by (1.7). 

2, Rslultr of the qualitativs analy8ir. Since H” isindependent ofgs, 
hence I’s = const is the first integral of the system, As a corollary we find that the 

eccentricity es of the external body orbit remains unchanged in the process of evolution. 
When H” is constant, formula (1.8) determines the integral curve in the plane rr, g,. 
We introduce below the notation g, = o more usual for Keplerian elements, and define 
integral curves in the plane E, w, where 

E = 1 - er2 = lY12/L12 

The topology of the set of integral curves in that plane depends on two parameters a, 
and p 

a = c/L,, p = r-,/L1 (2.9 
The reasonable restrictions 

--l<c0sJ=~~--&?~1, (2.2) 
E 

O<E\<1 
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isolate set M of admissible values of parame- 

ters a and p 

fil = {(a, B) E R2, I a - /3 1~ 1, 

a>% B>O} 

For any point (a, fi) E M it is possible to 
indicate such planet masses and orbits for which 
parameters a. and p have specified values, and 
the restrictions (1.1) and (1.2) imposed for the 

derivation of (1.8) are satisfied, 
The above analysis shows that the set M is 

divided by the inequalities specified below into 
the following nonintersecting regions : 

Fig. 1 

Region 1: p<a and 3fi2+a2<l 

Region II: a + p ( 1 and 0 ( (B - a)(a -I- fi)” < 5a [I - (a -k 8)"1 
Region II’: a f p > 1 and 0 ( 2 (3p2 + a2 - 1) < 5 [4p2 - (a” - 

82 - 1j21 

Region III: (a-8)2<~($+.z+~)<min{1, (a+/3}a)and (as- 

p”)” < (J!& ($ + cz2 + g)” and 5~2 [ 1 - (a + p)“] < (b - a) (a + 8)2v if 

a + f3 < 1,5 [4fYi2 - (a2 - p2 - I)“] < 2 (3s’ + ~9 - i), if U + B > 1 

Region IV complements the above regions to complete set M. 

Set M and its subdivision are represented in Fig. 1. 
The qualitative behavior of integral curves in regions I, I I and I I’, I I I and IV are pre- 

sented in Figs. 2, a, 2, b, 2, c and 2, d, respectively. 
Results of the analysis that correspond to boundary lines in Fig. 1 are shown in Fig, 3, 

as follows: (a) - NJV,; (b) ‘- N,N,N,; (c) - NsN&s, (d) - ON,, NJV,,, 

NJ*, (e) - 0N2, (f) - N,N,. Owing to the problem symmetry with respect to 61 

only segment 0 & o & n/2 is shown. 
The admissible range of values of E depends on a and 6, and is determined by the 

inequalities Emin = (a - p)” & E & Cmax = min (1, (a $- p)“}. The coordi- 

nates of singular points are determined by formulas 

A: (0 = 0, c = 3fi2 + a2), B: (0 = n/2, E = EB) 

E: 
‘w = q, 

i 

E = (a + fi)” for a + fi & 1 

0 = os, a = 1 for a + #J > 1 ) 

A’: (0 = n/2, E = &A’) 

where 

or = arc sin 

oz = arc sin 
2(3b2+ cca- 1) 

5 [432 - (as,-- 3”- I)7 
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and en and 8~8 are roots of equation 

es - 

b 

Fig. 2 

Let us note some of the qualitative laws that follow from these results. 
1”. There exist configurations determined by the equilibrium point B that are in 

a particular sense stable and steady. Semiaxes, eccentricities of both orbits, relative in- 
clination of their planes, and the position of the inner orbit pericenter relative to the 

Laplaqe plane are retained in related solutions. If the evolution of the position of the 
external orbit pericenter is neglected, it is possible to say that the orbits evolve as asolid 

body. 
2”. A circular solution e, = 0 (E =: 1) always exists when CL -/- b > 1 . It 

will be seen from Fig. 2 that that solution in regions I, I I I and IV is stable, while in re- 
gion II’ it is unstable. With the use of formulas which define the geometry of region II’ 
it is possible to prove the following statement. For the circular orbits to be unstable it 
is necessary and sufficient that the relative inclination I satisfies the inequalities 
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In the considered problem Ik (!s = 1, 2, 3) represent the critical inclinations. At 
transition through the critical inclination the orbit stability is disturbed with respect to 

eccentricity e, and relative inclination I. 

(2.3) 

corresponds to the plane case. When the kinetic moments of orbital motion have the same 

direction, then cos f = 1. When points ml and m, move in opposite directions,eosf= 
-_1 (the so-called retrograde motion). 

It follows from (2.3) that in the plane case the eccentricity e, does not vary, and the 
stability (instab~li~) of solution 1 eos 1 1 L= ‘i with fixed a and fi occurs simultane- 

ously with the stability (instability) of solution a = &milt or e == amax. Formula (2.3) 
and Fig. 2 imply that solution cos I = 1 is always stable, while solution cos I== - 1 
is unstable only then when the parameters of the problem belong to region I I. 

A clearer interpretation can be obtained by specifying the condition of belonging to 
region II for every 6 and cos I = -1 as the condition for the orbit eccentricity 

e’ (P) < e, & e2 (0) 

where ei (p) are determined by (2.3) and the equations of region II boundary. The re- 
sult can then be formulated as follows. A range of values of the orbit eccentricity e, for 

which the retrograde motion is unstable exists for any @ for which there are points of 

region I I. The values ei (p) are critical values of the eccentricity. 

4”. It follows from Figs. 3, e and f that, independent of initial conditions, for a = 
p at the end of evolution E = &mrn -= 0, i. e. the orbit eccentricity e, increases up to 

unity. Since the orbit semiaxis a, remains unchanged, the orbit pericenter vanishes for 
e, := 1 , and a collision between bodies m, and ml takes place. Formula (2.2) implies 
that the initial inclination 1 can have any value in the range of 90” to 180”, but I + 

90’ always when e, -+ 1. 
We separately note the case of ct = p = “ia. Boundaries of the four regions I, II, 

II * and III converge at that point, and there exist plane circilar orbits (cos I = ---I, 
e, = 0). Since the point borders on region I I, the plane orbits are unstable. Since if 
also belongs to line a = B, hence during the evolution the plane circular orbit is, first, 
transformed into a strongly elongated ellipse with an inclination close to SO” and, then, 
bodies m0 and m, collide. That case is considered below in a numerical example, 

3. Orbit@ of rmall eccentricitier and rslatfve inclfnrtion, The 
assumption (1.1) which defined the Hill case made it possible to investigate the aver- 
aged problem for arbitrary eccentricities and relative inclinations, in the course of which 

a multiplicity of values of the problem parameters for which the plane (retrograde) cir- 
cular motion is unstable. The stability of plane circular orbits can be investigated in the 
averaged problem without the restriction (a. 1) on which the previous analysis was based. 

Let us take g’ (I, 6) as the input Hamiltonian. We know that the averaged problem 
admits the circular solution e, = e, = 0 , to which in the Relaunay variables corre- 

spond the equalities I‘, == L1 and rz = La* 
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The analysis is conveniently carried out in the new canonical variables 

pi’- JfZrFi)cOS gj, qj = - v/z (Lj - rj) sin gj (i = 1, 2) 

Since pj = qj = 0 (j = 1, 2) must be the solution of the Hamilton equations, hence 
the expansion of H’ in a series in pj and qj begins with the quadratic part of H,. It 
can be shown that the latter can be represented in the form 

Ha (Pt 4) = $ (Pi” + 917 + + (Pz2 + 9??) i- Y (PrPa - 9192) + 

&12 -k 4 Pa2 + &PIP, 

where pi, y and 6i are coefficients that depend on parameters c, L1 and La , andon 
the mass of planets. The characterisitc equation of the related linear system is of the 

form h4 + a2 [Br (Pi + 61) + Bz (Bz + 6,) - 2y (y + &)I + (f3J3* - (3.1) 

V”)[(Pi + &)(BP + 6,) - (y + 6,)Y = 0 

Owing to the complex dependence of coefficients of this equation on parameters, its roots 
were not analyzed in the general case. We shall solve the considered problem of stabi- 

lity of plane circular orbits with respect to eccentricities with the use of a special me- 

thod. 
Below we consider orbits that are close to plane retrograde ones (cos 1 z -1). 

We substitute for the area constant c the quantity 6 = c - co, where CO = co (L,, L,) 
is the constant of areas which corresponds to plane circular orbits with coS 1 = -1, 

i.e. co2 = (L, - ,&)a. It is not difficult to see that for circular orbits 6 > 0. 
It can be shown that the asymptotic representation 

I% = Pi0 + 649 (32 = 820 + 65, Y = yo + 68 (3.2) 

LO = -h2(&---&)Bl', p20 = -h(&- &-)&I 

y. = - fm2 L 
4 I/L&, 

BkJ = moBI, 
( 

m,~m, ~1, G) + mlBf( n,ym, a~, aa) 

x 

Bh. b-1, Za) = .2_ 
s 

x1x2 cos kcp dq 

Jc (p?f xg - 2x1x2 cos cp)“” 
(k = I, 2) 

where ai are orbit semiaxes and a,, 6,, . . ., 6, tend to zero together with 6 is valid. 

Let us first investigate the case of 6 = 0. We denote the expression for Ha when 

6 = 0 by Hz,,- The condition of fixed sign for Hz0 is of the form 

BlOt320 - To2 > 0 (3.3) 

Thus, according to the Liapunov theorem, the plane circular (retrograde) motion is stable 
with respect to eccentricities and relative inclinations, also, for fairly small 6 > 0.. 

Further analysis is based on the validity of the inequality (pi0 + fiao)2 - 4y02 > 

0 which follows from inequalities B, > B, > 0 [l]. It can be shown by using this 
inequality in the analysis of roots of (3. 1) that the tcllowing statement is valid. When 
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6 = 0 and @J&O- To2 & 0 the roots of Eq. (3.1) are pure imaginary and different, 

except when ~~~~~~ - y. 2 = 0 (a pair of zero roots). 
Thus when j310fizo - yo2 < 0 the plane circular solutions are stable in a linear ap- 

proximation and, since the roots are different, the stability is strong, i. e. in the linear 
approximation stability exists for fairly small 6. 

It can be shown that zero roots do not generate instability of the system defined by the 
Hamiltonian HzO, i.e. the circular plane (retrograde) motion is stable in linear appro- 
ximation with respect to ~r~rba~ons which do not alter the constant 6 = 0. 

However, as will b.e now shown, for small 6 > 0 in the neighborhood of surface no: 

BlOBZO - yo2 = 0 there exists in the parameter space of the problem a complete re- 
gion (of width - 6) in which the circular solution is unstable. In fact,it follows from 

Eq. (3.1) that when 
(MA? - Y2P + (B1Bz - Y2P < 0 (3.4) 

the characteristic equation has a positive real root, and the solution of the system with 
Hamiltonian H2 is unstable with respect to the eccentricity, 

For fixed 6 the quantities pi, y, ~5~ depend on the set of parameters z = (L,, L2, 
mo, 7711 and KG%). Let us consider in space z the hypersurface D: &fla - y2 = 0 
which tends to Do when 6 .+- 0 , When passing through that surface f&& - y”) 
changes its sign. If function X does not vanish at surface n , then to one side of that 

surface there exists a set of values of the problem parameters for which the circular so- 
lution is unstable with respect to eccentricities, in particular, when the semiaxes a, and 
a2 are varied. 

It remains to show that the condition, filfiz - y2 = 0 does not imply that X = 0. 
Owing to the analytic dependence of X on parameters z , it is sufficient to prove this 
in some limit case. When a,la, - 0 and 6 -+ 0 , we can obtain the following asymp- 
totic estimates 

It is evidently possible to find O,, (6) and O,, (a,!a,) such that the relatio~h~p 
filfia - y2 = 0 is satisfied for 

L, = 2Lz + 010 (6) + 011 (44 

and the calculation by formula (3.4) yields 

This proves the existence of a region of unstable circular orbits close to the surface 

PlOP20 - yo2 = 0. Using formula (3.2) for plot pzo and TO, it is possible to solve 
this equation for J& 
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L& 5_; 
( 

i')/(5-$)a_16) 
1 
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(3.5) 

This implies that for any values of a,, Us, ms and m, and a fairly small 6 > 0 there 
exist two ranges of values of m2 for which the related circular value is unstable. length 
of these ranges tends to zero when 6 -+ 0. 

Note. 1”. In the Hill’s case formula (3.5) yields two solutions 

a) L, .zzY 24 (a = cg / L, = i/s, p = L, / L, = I/,) 

b) L,== 2L, (a= 1, 3= 2) 

It was shown above that in the case (a) X # 0 , and the conclusion about the instabi- 
lity of plane (retrograde) circular orbits when a = p x 1/e. 

In case (b) the described procedure does not allow the proof of the inequality X # 0 
with an accuracy to within the Hill approximation. This also agrees with that within the 

Hill approximation no instability was revealed for OL = 1 and fi = 2 . This does not, 
however,exclude the appearance of instability in the next approximation with respect 

to a, / a2. That case requires a more detailed analysis. 
2”. The complete (nonlinear) analysis of the problem of stability of circular plane 

(retrograde) orbits requires, furthermore, the exposure in region pl/3t - yz < 0 of sur- 
faces on which resonance relationships (of third and fourth order) between the roots of the 
characteristic equation (3.1) make their appearance, and to analyze the system for sta- 
bility with allowance for terms of the third and fourth order with respect to p/ and qj in 
the Hamiltonian ??‘. 

The considered system has always two degrees of freedom, hence outside the indicated 
resonance surfaces a strict (nonlinear) stability with respect to eccentricities and incli- 

nation is generally present. 

4. Comprrlron with the rorultr of numeric&l intogrrtfon, Con- 
clusions of the approximate analysis of the averaged system were checked by the method 

of numerical integration in the following formulation. 
Rigorous equations of motion of three points gravitating in conformity with the law of 

universal gravitation were considered in a system of nonrevolving Cartesian coordinates 

with origin in m. 

Dimensionless quantities of length, mass, and time determined so’as to have the gravi- 

tational constant equal to unity were used. 
The following values of the mass of planets and initial elementsoforbitswere selected: 

m, = ml = I, m2 = II9 (4.1) 
a, Y-7 1, e, = 0.08, i, = li5.4”, o = g, = 26.6”, 6, = 180’. 6, = 0 
a, L 5.3, e2 = 0, i, = 0, g, = 0, 8, = 0. 6, = 0 

where fti is the true anomaly, and subscripts 1 and P relate, respectively, to the orbit of 
ml relative to m,, and to orbit of r,z2 relative to the barycenter of m,, and ml. The Car- 
tesian coordinates and components of velocity of ml and m, relative to m, at the instant 
of time t = 0 were computed for the data in (4.1) using the formulas of the problem 

of two bodies. 
The input data were chosen so as to correspond to the most interesting case when a z 

6 z ‘I,. These conditions do not uniquely determine the mass of points and the orbit 
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semiaxes. The remaining arbitrariness was used in the form of a compromise for obtain- 
ing with a reasonably small n,irt, (the Hill approximation) for a not too small vi (1.2). 
An excessively small vr would have resulted in an increase of the time duringwhichsig- 
nificant effects of evolution become apparent. 

For a =r fi r= ‘:z the first of formulas (2.2) implies the following dependence of the 
orbit eccentricity on the inclination T of orbits: 

Pr = sin I (4.2) 

The input values of e1 and I satisfy this relation. To check the revealed instability 
of plane circular orbits it is necessary to select e1 (and sin 1) closer to zero. It is, how- 
ever, possible to show that with small initial el the evolution is extremely slow. A two- 
fold increase of eccentricity occurs in a time interval of order i!r,’ (the depeendence 

of the computer working time is similar), In this sense er = 0.08 is a compromise. 
The curve of function (4.2) is shown in Fig. 4, where the dots denote the osculating 

values of e, and I determined by numerical integration, The time corresponding to 

points I - 7 is given below 

.V 12 3 4 5 6 7 
t. 10-G 0 1 1.1 1.128 1.136 1.14 1.1 424 

The numerical integration confirms the results of the present analysis not only quali- 

0.5 

L 

Fig, 3 

tatively, but also quantitatively with a reasonable de- 
gree of accuracy. 

Certain discrepancy between computed points and 
the theoretical curve for er G 0.96 and 1 zz 107.6” 
can be explained by the difference of the osculating 
elements from the average. 

6. Hittoffcsl notes, The averaged problem 
of three bodies was considered in [3] in the Hill appro- 
ximation, The case of fl $P 1 which in fact is equi- 
valent to the limited problem of three bodies, was ana- 

lyzed, It was shown that the problem is integrable. 

Only the case of small eccentricities and inclinations, 
when parameters a and i3 belong to region IV and the 

phase pattern in the plane (8, o) is of the simplest kind 
(Fig. 2, d), were qualitatively investigated. 

The limited problem was fully investigatedinr4, 51 
where new kinds of motion that correspond to region 
II ’ in the plane (a, @} were qualitatively disclosed, 
the effect of collapse on the central body of orbits 
with a 90” initial inclination (a particular case of con- 
dition a =I 6 when m, + 0) evinced, and the critical 
inclination cos2 I = 3/6 determined, 

The un~mited problem in the Hill approximation 
was considered in [6 - lo}. It was shown in [6] that the unlimited problem is integrable, 

while its qualitative analysis was carried out in [6 - lo] for fairly large fi. No cases 
were indicated in which (a, fl) belong to regions I, I I and II I shown in Fig.& where 
significant new effects that are due to the problem unrestrictedness become apparent. 
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Formulas for critical inclinations I 17 2,s were obtained in [ 111 by a different method. 
Stability of straight motions at small inclinations and eccentricities is known from the 

analysis of Lagrange secular perturbations (see, e. g. [ 11). 
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